BANDEAU4_ESMC_copie_1.jpg

AI-driven optimization of heterogeneous structures in LPBF-fabricated Al-Cu-Mg aluminum alloys for enhanced mechanical performance
Changshan Zhou  1@  , Nan Kang  2, *@  , Mohamed El Mansori  3, *@  
1 : Mechanics surfaces and materials processing
Arts et Métiers ParisTech, Arts et Métiers Paris Tech
2 : Mechanics surfaces and materials processing  (MSMP)
Arts et Métiers ParisTech, Arts et Métiers Paris Tech
Centre Arts et Métiers ParisTech 2 cours des Arts et Métiers 13 617 Aix en Provence -  France
3 : Mechanics surfaces and materials processing  (MSMP)
Arts et Métiers ParisTech
Centre Arts et Métiers ParisTech 2 cours des Arts et Métiers 13 617 Aix en Provence Centre Arts et Métiers ParisTech Rue Saint Dominique B.P 508 51 006 Châlons-en-Champagne Centre Arts et Métiers ParisTech 8 boulevard Louis XIV 59 046 Lille Cedex -  France
* : Corresponding author

The use of artificial intelligence (AI) to regulate the heterogeneous structure of materials in order to enhance mechanical properties has become a critical area of research in materials science and engineering. By integrating machine learning (ML) and deep learning (DL) techniques, a quantitative relationship can be effectively established between manufacturing process parameters, heterogeneous microstructural features, and mechanical properties. This study proposes a method based on a conditional generative adversarial network (cGAN) to regulate the heterogeneous structure of a new high-strength aluminum alloy, Al-Cu-Mg, using laser powder bed fusion (LPBF) process parameters. The method generates the desired microstructure and further optimizes the mechanical properties, thereby demonstrating the potential of AI in additive manufacturing. This study provides a foundational framework for systematically linking additive manufacturing parameters with microstructure and mechanical properties through AI-driven models. This work not only promotes process optimization and material design but also lays the groundwork for precise microstructure control in a wide range of metal additive manufacturing applications.


Loading... Loading...